Parametric pricing of higher order moments in S&P500 options

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Pricing of Higher Order

A general parametric framework based on the generalized Student t distribution is developed for pricing S&P500 options. Higher order moments in stock returns as well as time-varying volatility are priced. An important computational advantage of the proposed framework over Monte Carlo-based pricing methods is that options can be priced using one-dimensional quadrature integration. The empirical ...

متن کامل

Higher Order Moments and Recurrence Relations of Order Statistics from the Exponentiated Gamma Distribution

Order statistics arising from exponentiated gamma (EG) distribution are considered. Closed from expressions for the single and double moments of order statistics are derived. Measures of skewness and kurtosis of the probability density function of the rth order statistic for different choices of r, n and /theta are presented. Recurrence relations between single and double moments of r...

متن کامل

Higher-order moments and tensors

P(X = z t) = w t > 0. How to learn parameters {(w t , z t)} k t=1 ? Relatively straightforward given iid sample.

متن کامل

Conditioning Information and Variance Bounds on Pricing Kernels with Higher-Order Moments: Theory and Evidence

The author develops a strategy for utilizing higher moments and conditioning information efficiently, and hence improves on the variance bounds computed by Hansen and Jagannathan (1991, the HJ bound) and Gallant, Hansen, and Tauchen (1990, the GHT bound). The author’s bound incorporates variance risk premia. It reaches the GHT bound when non-linearities in returns are not priced. The author als...

متن کامل

Source Separation Using Higher Order Moments

This communication presents a simple algebraic method for the extraction of independent components in multidimensional data. Since statistical independence is a much stronger property than uncorrelation, it is possible, using higher-order moments, to identify source signatures in array data without any a-priori model for propagation or reception, that is, without directional vector parametrizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Econometrics

سال: 2005

ISSN: 0883-7252,1099-1255

DOI: 10.1002/jae.762